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A model for the brittle to ductile transition of brittle single crystal materials under
indentation has been investigated. Continuous dislocation pile-ups against the wedge tip
are used to explain the plastic deformation. The indentation depth is attributed to the
dislocation pile-ups. The critical indentation depth pc of brittle to ductile transition is
proposed. Thus, the single crystal material is in brittle mode during the indentation loading
if the indentation depth is greater than pc. Otherwise, it is ductile. Micrographs support this
modeling. Indentation on the surfaces of (100) or (110) in fcc and bcc single crystal
materials is compared. The parameter S is proportional to the number of dislocations and
to the reciprocal of wedge angle. The value of S is smaller for (100) than for (110) in fcc
structure, but the trend of bcc structure is opposite. The shape of indenter is similar to that
of grinding particles consisting in cutting tools. In order to maintain cutting efficiency in
ductile mode, the cutting tool must be replaced if the grinding particles are blunt.
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1. Introduction
Single crystal silicon is widely used in semiconductor
manufacture, specifically, for the production of inte-
grated circuits, large integrated circuits, and very large
integrated circuits, etc.. The machining process of sili-
con wafers is the critical step to achieve the high qual-
ity of semiconductor devices. Stresses near the surface
and subsurface are unavoidable during the machining.
Mechanical damage appears if these stresses are large
enough to generate dislocations or cracks [1, 2]. These
dislocations or cracks alter the diffusion of impurities,
electron-hole recombination, etc.. Thus, understanding
the machining process of single crystal silicon is a key
issue in semiconductor manufacturing.

The brittle versus ductile behavior of a material
with crack has been extensively studied. According to
Dieter [3], fracture requires only little energy for a brit-
tle material, and a significant amount of energy for a
ductile material. Khantha et al. [4] and Khantha [5] ob-
served that the transition from brittle cleavage to ductile
failure is attributed to a massive generation of disloca-
tions arising from a cooperative Kosterlitz–Thouless
type instability in single crystal silicon. Roberts et al.
[6] used a computer simulation of the dislocation dy-
namics near a crack tip to explain the experimental data
of a brittle to ductile transition. Roberts et al. [7] found

the activation energy for the brittle to ductile transition
is equal to that of dislocation glide in silicon, germa-
nium and sapphire. Hirsch and Roberts [8] analyzed the
strain-rate dependence of the sharp transition temper-
ature. Rice and Thomson [9] proposed a spontaneous
dislocation emission criterion and analyzed the brittle
to ductile transition for different materials. Zhang [10],
Chang and Ohr [11], Lee and coworkers [12–14] also
studied the ductile versus brittle transition based on
continuum dislocation theory and discrete dislocation
pile-ups. Those researchers concentrated on the brittle
versus ductile behavior of material with a crack appear-
ing before the mechanical loading and concerned the
intrinsic properties of materials. They did not consider
a crack-free material prior to loading.

In this paragraph, the material is considered intrin-
sically brittle. Before cutting, the single crystal mate-
rial is assumed to be crack-free. For example, Fig. 1
shows the morphology of a machined (111) plane in
single crystal silicon. The cutting depth increases from
the upper-right to lower-left direction. It can be seen
from the figure that the upper-right region (look like
the fine parallel stripes) is ductile and the lower-left re-
gion (look like the coarse irregular stripe) is brittle. The
brittle to ductile transition region is located at the diag-
onal line where the depth is between 0.5 and 0.8 µm.
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Figure 1 A SEM micrograph of machined silicon (111) plane by a ruling tool where the turning speed is 3000 rpm and cross feed speed is
80 nm/revolution.

Figure 2 A micrograph of silicon (100) plane under a spherical indenter of tip radius 5 µm. The upper and lower morphologies are subject to 200
and 400 mN, respectively.

The brittle to ductile transition of material removal un-
der cutting was also studied by Nakasuji et al. [15].
Cleavage behaves in a brittle manner whereas plastic
deformation behaves in a ductile manner. The brittle
to ductile transition of material removal was analyzed
based on molecular dynamics simulation [16, 17]. For
simplification, both indentation and scratch tests are of-
ten used to simulate the machining problem. However,
indentation-induced phase transformations have been
observed [18, 19]. Recently, we observed the brittle to
ductile transition of silicon at a load between 200 mN
and 400 mN using a spherical nano-indenter of tip ra-
dius 5 µm (see Fig. 2). It prompted us to study the brittle

to ductile transition of a single crystal material using
a wedge indenter. We propose a simple model based
on the dislocation nucleation and motion under the in-
dentation to explain the brittle versus ductile behavior.
Furthermore, based on this criterion, we analyze the
indenter acting on the (100) or (110) planes in fcc and
bcc single crystal materials.

2. Brittle to ductile transition analysis
2.1. Dislocation pile-ups
The problem is shown in Fig. 3. A wedge indenter
is normal to the free surface (100) of single crystal
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Figure 3 A schematic diagram of single crystal silicon under indentation
loading.

silicon. The indentation line (intersection between the
wedge indenter and silicon) is in the [011̄] direction.
The wedge angle of the indenter is 2θ . Assume that the
free surface is flat before the load is applied. Under ac-
tion of the load, the displacement and stress fields near
the tip build up and the maximum shear stress is located
at the wedge tip. Although the loading stress is less than
the friction stress, the stress at the wedge tip (stress con-
centration) is possibly greater than the friction stress.
During loading, dislocations emanate from the wedge
tip and move away in its slip plane as soon as its shear
stress becomes greater than the critical resolved shear
stress. Note that the indentation-induced phase trans-
formations are not considered because the energy con-
sumed by the dislocation is much greater than that by
indentation-induced phase transformation. Upon un-
loading, some incipient dislocations retreat back to the
wedge tip and the rest of the dislocations pile up near
the wedge tip. During loading, the indentation depth
is due to both elastic deformation and plastic deforma-
tion [12, 14]. The elastic displacement recovers after
load removal so that after loading the indentation depth
is completely due to the plastic deformation. For crys-
talline materials, the plastic deformation is dominated
by dislocation pile-ups.

Assume that the indentation depth is fully pro-
duced by dislocations. The dislocations of infinitesimal
Burgers vector D(x)dx are parallel to each other and
line up against the wedge tip from the positive x-axis
upon unloading where D(x) is the dislocation density
between x and x + dx. The piled-up length is L . The
force equilibrium [20] is written as

G

2π (1 − ν)

∫ L

0

D(x)

x ′ − x
dx = σ f for 0 < x < L

(1)

where G, ν and σ f are the shear modulus, Poisson’s ra-
tio and the friction stress, respectively. The total Burgers
vector nb is ∫ L

0
D(x) dx = nb (2)

The solution of Equation 1 with Equation 2 is [20]

D(x) = 4nb

π L

√
L − x

x
for 0 � x � L (3)

where

L = Gnb

πσ f (1 − ν)
(4)

Although the above derivation is valid in an infinite
medium, this is a good approximation for dislocation
pile-ups against a free surface based on the numerical
calculation. The error is less than 10% for edge disloca-
tion. However, the analytical solution for a semi-infinite
medium is not available. The purpose of this study is
to explain qualitatively the brittle to ductile transition
so that the above approximation is reasonably adopted.
The detailed analysis will be in the future.

2.2. Indentation depth
The slip plane of single crystal silicon is (1̄1̄1) and the
vertical plane consisting of the wedge tip is (1̄1̄0), i.e.,
the angle between these two planes is 35.26◦ as shown
in Fig. 3. If the wedge angle is 70.53◦, the dislocation
slip occurs at positions a and a′ as shown in Fig. 4a. As
stated in the previous section, the indentation depth p
along the direction [112] is attributed to the dislocation
slip. Then the total Burgers vectors nb along ac and a′c′
is

nb =
√

6p/4 (5)

If the wedge angle is slightly different from 70.53◦, the
other slip systems would occur as shown in Fig. 4b and
c. However, the primary slip system is still dominated
by those of the wedge angle 70.53◦. Therefore, the total
Burgers vector along ac and a′c′ is modified as

nb = p sin θ/ sin(θ + 35.26◦) (6)

Figure 4 The slip systems for different wedge angles: (a) θ = 35.26◦;
(b) θ < 35.26◦; (c) θ > 35.26◦.

3771



where θ is half wedge angle defined before. n increases
with increasing θ for θ smaller than 90◦.

2.3. Brittle to ductile transition criterion
Under the action of indentation loading, the plastic de-
formation of single crystal silicon is due to disloca-
tion movement. If the mobility of dislocations is low
enough, the dislocations cannot move and a crack nu-
cleus is formed. The mechanical failure of the single
crystal silicon is attributed to fracture and the material
is brittle. According to Stroh [21], a crack nucleus is
formed when two leading dislocations in a pile-up are
forced to separate within a distance of one Burgers vec-
tor. That is, the dislocation density near the wedge tip
satisfies the equation,

∫ b

0
D(x) dx > b (7)

Substituting Equations 3, 4 and 6 into Equation 7, we
obtain

p > pc = πGb

16σ f (1 − ν)

sin(θ + 35.26◦)

sin θ
(8)

where pc is the critical indentation depth of brittle
to ductile transition. If the indentation depth satisfies
Equation 8, a brittle behavior is expected. Otherwise,
the single crystal silicon is ductile under this process.

3. Micromachining modeling
The micromachining tool consists of many grinding
particles. Under an action of compression load, grind-
ing particles move and cut a thin layer of brittle material.
The cutting process is simply simulated by the indenta-
tion and scratching. The indentation is analyzed in the
present study while the scratching will be studied in
the future. Each grinding particle may be considered as
a wedge indenter. Although we concentrated on single
crystal silicon in the previous section, this treatment can
be extended to other brittle materials. Here and after,
we consider a wedge indenter acting on a brittle single
crystal material. The total Burgers vector nb along the
slip direction is proportional to the indentation depth p
and Equation 6 is modified as

nb = Sp (9)

where S is a function of crystal structure, indentation
plane, indentation angle, slip plane, etc.. According to
Equation 9, for a given indentation depth, the value of
S increases with number of dislocations in the single
crystal material (or work piece). More dislocations im-
ply more pronounced work hardening. After reach this
indentation depth, it is harder to create dislocation. That
is, the material becomes brittle.

Mechanical damage depends on the crystal orienta-
tion and structure. It is reasonable to extend the critical
indentation depth pc from single crystal silicon (see

Equation 8) to brittle single crystal material,

pc = πGb

16σ f (1 − ν)

1

S
(10)

For the same shear modulus, Poisson’s ratio, and
friction stress, the critical indentation depth is in-
versely proportional to the parameter, S. According to
Equation 10, if the value of S increases, the critical in-
dentation depth decreases. This implies that the cutting
depth decreases with increasing S for machining brittle
material in the ductile regime.

A comparison of experiments with the present model
is made. First, Fig. 1 shows a SEM micrograph of a
(111) plane in single crystal silicon machined by a rul-
ing tool. The ruling tool with a cross feed speed of
80 nm/revolution moves along the diagonal line from
the upper-right to the lower-left region so that the cut-
ting depth is small in the upper-right region and large in
the lower-left region. The upper-right region is ductile
whereas the lower-left region is brittle. The diagonal
line at the depth between 0.5 and 0.8 µm is a critical
cutting depth of the brittle to ductile transition. Sec-
ond, upper and lower indentation morphologies of sin-
gle crystal silicon subjected to 200 mN and 400 mN
are shown in Fig. 2. It can be seen from Fig. 2 that no
crack appears in the region around the upper indenta-
tion and many cracks are observed in the region near
the lower indentation. Because the indentation depth is
proportional to the applied force, the upper indentation
has a smaller indentation depth than the lower indenta-
tion. The critical indentation depth is located at a load
between 200 mN and 400 mN. In summary, both ex-
perimental observations are good agreement with our
prediction.

4. S function
4.1. Derivation of S Function
From the previous section, the parameter S plays a very
important role on micromachining. According to Fig. 3,
if lines aa and a′a′ are parallel to each other, the param-
eter S can be extended from the single crystal silicon
(Equation 6) to a brittle single crystal material as

S = sin θ/ sin(θ + θs) (11)

where θs is the angle between slip plane and vertical
plane. Tables I and II list some values of θs in fcc and
bcc structures, respectively. On the other hand, if two
lines of aa and a′a′ are not parallel, i.e., the angle be-
tween these two lines is φ, then θ in Equation 11 should
be replaced by θ1 = tan−1 (tan θ /cos φ) and the length
becomes shortened by a factor of cos φ (see Fig. 5).
Therefore, Equation 11 becomes

S = sin θ1 cos φ/ sin(θ1 + θs) (12)

Furthermore, if the several slip planes occur simul-
taneously under the indentation, then Equation 11 is
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T ABL E I Indentation plane, aa line and slip planes of fcc structure
with the corresponding angles θs.

Indenatation
plane aa line slip plane θs

(100) [011] (11̄1),(111̄) ± tan−1(1/
√

2) ∼= ±35.26◦
[011̄] (111),(11̄1̄) ± tan−1(1/

√
2) ∼= ±35.26◦

(110) [11̄0] (111),(111̄) ± tan−1 √
2 ∼= ±54.74◦

[11̄2] (11̄1̄) 0◦
[11̄2̄] (11̄1) 0◦

(111) [11̄0] (111̄) ± tan−1(
√

2/4) ∼= ±19.47◦
[101̄] (11̄1) ± tan−1(

√
2/4) ∼= ±19.47◦

[011̄] (11̄1̄) ± tan−1(
√

2/4) ∼= ±19.47◦

T ABL E I I Indentation plane, aa line and slip planes of bcc structure
with the corresponding angles θs.

Indentation
plane aa line slip plane θs

(100) [010] (101̄),(101) ±45◦
[001] (101),(101̄) ±45◦
[011] (011̄) 0◦
[011̄] (011) 0◦

(110) [001] (11̄0) 0◦

(110) [11̄1̄] (101),(011̄) ±30◦
[11̄1] (101̄),(011) ±30◦

Figure 5 The schematic of lines aa and a′a′.

modified as

S =
m∑

i = 1

sin θi cos φi/ sin(θi + θs,i ). (13)

where θi = tan−1(tan θ /cos φi ) and m is the number of
slip planes. φi is the angle between both lines aa and
a′a′ and θs,i is the angle between the i th slip plane and
vertical plane.

(a)

(b)

(c)

(d)

Figure 6 The curves of S versus the half wedge angle θ with various φ:
(a) Indentation on (100) plane of fcc structure, (b) Indentation on (110)
plane of fcc structure, (c) Indentation on (100) plane of bcc structure,
and (d) Indentation on (110) plane of bcc structure.
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4.2. Numerical results of S function
Assume that the dislocation slips in the {111} and {110}
plane systems in the fcc and bcc single crystals, respec-
tively, and a load is indented on the free surfaces (in-
dentation plane) (100) and (110). From Tables I and II
and Equation 13, we obtain the function S,

S f cc,100 = sin θ1 cos φ

sin(θ1 + 35.26◦)
+ sin θ2 cos(90◦ − φ)

sin(θ2 + 35.26◦)

(14a)

S f cc,110 = sin θ1 cos φ

sin(θ1 + 54.74◦)
+ |cos(54.74◦ + φ)|

+ cos(54.74◦ − φ) (14b)

Sbcc,100 = sin θ1 cos φ

sin(θ1 + 45◦)
+ sin θ2 cos(90◦ − φ)

sin(θ2 + 45◦)

+ |cos(45◦ + φ)| + cos(45◦ − φ) (14c)

Sbcc,110 = cos φ + sin θ3|cos(35.26◦ + φ)|
sin(θ3 + 30◦)

+ sin θ4 cos(35.26◦ − φ)

sin(θ4 + 30◦)
(14d)

respectively, where

θ1 = tan−1(tan θ/ cos φ) (15a)

θ2 = tan−1[tan θ/ cos(90◦ − φ)] (15b)

θ3 = tan−1[tan θ/| cos(35.26◦ + φ)|] (15c)

θ4 = tan−1[tan θ/ cos(35.26◦ − φ)] (15d)

Fig. 6a shows the curves of Sfcc,100 versus the half
wedge angle θ with various values of φ. S increases
with θ and φ. Instead of indentation plane (100), the
values of S for indentation plane (110) are plotted in
Fig. 6b. For a given θ , S oscillates with φ. The curves of
Sbcc,100 and Sbcc,110 versus the half wedge angle θ with
various values of φ are plotted in Fig. 6c and d, respec-
tively. For a given θ , S oscillates with φ for indentation
plane (100) and decreases monotonically with increas-
ing φ for indentation plane (110).

For a given φ, S increases monotonically with in-
creasing θ for both indentation plane and crystal struc-
ture with the exception of the line φ = 0 where the in-
denter acts on the plane (110) in fcc structure. When
the wedge angle increases, the critical indentation depth
decreases. This implies that the cutting depth of brittle
material within the ductile regime is reduced. In order
to cut efficiently in the ductile mode, the cut blade must
be replaced if its grinding particle is blunt. Comparing
Figs 6a and b, the value of S is smaller for (100) plane
than for (111) plane in fcc structure, but the trend for
the bcc structure is opposite (see Fig. 6c and d).

5. Summary
An indenter is used to simulate the single grinding par-
ticle of the cutting tool. A model based on disloca-
tion pile-ups is proposed to explain the brittle to ductile
transition in brittle single crystal materials during in-

dentation loading. The indentation depth is due to the
dislocation motion. If the Burgers vector of a continu-
ous dislocation within a distance of one Burgers vector
from the wedge tip is larger than one Burgers vector, a
crack nucleus is assumed to be generated. Based on this
assumption, we define the critical indentation depth pc
that is increased linearly with the shear modulus and
Burgers vector, and inversely proportional to the fric-
tion stress and parameter S. The parameter S depends
on the crystal structure and orientation. If the indenta-
tion depth is greater than pc, the material will be cut in
a brittle regime. Otherwise, it is ductile. Experimental
evidence is provided with both ruling tool and nano-
indentation.

We compare a load indented on the (100) and (110)
faces in the fcc and bcc structure. The value of S for the
indentation plane (100) in the fcc structure is smaller
than that for (110), but the trend for bcc structure is op-
posite. This implies that cutting is more brittle on (110)
than on (100) at the same indentation depth for the fcc
structure, but the trend of bcc structure is opposite. The
value of S increases with increasing wedge angle re-
gardless of crystal structure and indentation plane. This
is equivalent to that the wedge angle increases with de-
creasing critical indentation depth. For keeping cutting
in ductile mode, the indentation depth decreases with
increasing wedge angle. Furthermore, in order to main-
tain the cutting efficiency in ductile mode, the cutting
blade must be replaced if the grinding particle is blunt.
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